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a b s t r a c t

An analytical method is derived for determining the vibrations of two plates which are

generally supported along the boundary edges, and elastically coupled together at an

taken into account at the junction via four types of coupling springs of arbitrary

stiffnesses. Each of the transverse and in-plane displacement functions is expressed as

the superposition of a two-dimensional (2-D) Fourier cosine series and several

supplementary functions which are introduced to ensure and improve the convergence

of the series representation by removing the discontinuities that the original

displacement and its derivatives will potentially exhibit at the edges when they are

periodically expanded onto the entire x–y plane as mathematically implied by a 2-D

Fourier series. The unknown expansions coefficients are calculated using the Rayleigh–Ritz

procedure which is actually equivalent to solving the governing equation and the

boundary and coupling conditions directly when the assumed solutions are sufficiently

smooth over the solution domains. Numerical examples are presented for several

different coupling configurations. A good comparison is observed between the current

results and the FEA models. Although this study is specifically focused on the coupling

of two plates, the proposed method can be directly extended to structures consisting of

any number of plates.

& 2010 Elsevier Ltd. All rights reserved.
1. Introduction

The vibrations and power flows between two coupled plates are of interest to both researchers and application
engineers. A good understanding of the interactions between two plates will provide insight into the design of more
complex dynamic systems such as ship hulls, land and space vehicles, and building structures. Although this kind of
problems can be easily solved by a numerical method such as FEA, an analytical approach, whenever available, may be
preferred because it is typically more suitable for parametric study, sensitivity and uncertainty analysis, and design
optimization. In addition, for the same spatial resolution, the number of degrees of freedom is usually much smaller in an
analytical model which becomes particularly attractive for high frequency analysis. This is probably why analytical
approaches have received a lot of attention for many years.
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Nomenclature

a length of plate
b width of the plate
D flexural rigidity
E Young’s modulus
G extensional rigidity
h thickness of plate
K stiffness matrix
Kbx10, Kbx11 rotational stiffnesses for bending vibration

at x1=0 and a1, respectively
Kby10, Kby11 rotational stiffnesses for bending vibration

at y1=0 and b, respectively
Kbx10, Kbx11 translational stiffnesses for bending vibration

at x1=0 and a1, respectively
Kby10, Kby11 translational stiffnesses for bending vibration

at y1=0 and b, respectively
knx10, knx11 normal stiffnesses for in-plane vibration at

x1=0 and a1, respectively

kny10, kny11 normal stiffnesses for in-plane vibration at
y1=0 and b, respectively

kpx10, kpx11 tangential stiffnesses for in-plane vibration
at x1=0 and a1, respectively

kpy10, kpy11 tangential stiffnesses for in-plane vibration
at y1=0 and b, respectively

Kc rotational coupling stiffness at the common
edge

kc1, kc2, kc3 linear coupling stiffnesses at the common
edge in z1, x1, y1-directions, respectively

M mass matrix
u(x, y) in-plane displacement component in the

x-direction
v(x, y) in-plane displacement component in the

y-direction
w(x, y) bending displacement in the z-direction
m Poisson ratio
r mass density of plate material
o angular frequency
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In the early investigations, the coupling was typically considered only between the bending waves [1–3]. However, the
exclusion of in-plane modes may lead to significant prediction errors at high frequencies, for thick structural components,
or at distances far away from the sources [4,5]. Take the ship environment for an example, in which the coupled plates are
classical structural form, some phenomenon with onboard machinery like pump cavitation will generate such high
frequency vibration. Then, the in-plane resonant modes which are commonly of much higher frequency (usually, up to
thousands of Hz) will be easily excited by the transverse motion propagating from its adjacent plate structure for an angled
connecting configuration. The in-plane vibrations have been routinely considered nowadays to better predict the dynamic
behaviors of and the power flows between two plates coupled together at an angle. In addition to the well-known
numerical methods such as the statistical energy analysis method [6–8] and finite element methods [9–11], several
analytical methods have been employed to study the vibrational energy flows between coupled plates. Based on the wave
description of displacement fields, the power transmissions were studied between semi-infinite plates for various types of
joints [12–15]. The dynamic stiffness matrix technique developed by Langley [16] is extended to include in-plane
vibrations and applied to ship foundation and hull represented by a row of panels coupled together [17,18]. Cuschieri and
McCollum [2,3,19] presented a mobility power flow method to examine the energy transfer through an L-shaped junction.
The technique which has been most widely used in the literature for studying the power flows in plate structures is the
receptance technique originally proposed by Azimi et al. [20]. Dimitriadis and Pierce [21] employed this technique to
derive the energy flows between two plates. Farag and Pan [22] analyzed effects of the coupling angle on the input power
and power flow across the coupling edge by using the concept of receptance. Kim et al. [23] extended the method to the
interactions of any number of plates at a common junction. The receptance approach was also used by Beshara and Keane
[24] to study the energy flows through compliant and dissipative couplings where the response of each substructure is
described in terms of Green functions. The interactions between flexural and in-plane vibrations are often ignored in the
vibration and power flow calculations by assuming they play an insignificant role somehow due to the frequency range of
interest, the coupling configurations, the idealized boundary conditions, the load conditions, etc. The effect of in-plane
waves on the power flow is examined by Kessissoglou [25] by using a combination of a traveling wave and modal solution
to describe the flexural and in-plane displacements. It is shown that in-plane waves can act as flanking paths for the
flexural wave energy, especially as the frequency and distance from the source to the receiver increase. A substructure
approach is presented by Wang et al. [26] to investigate the power flow characteristics of an L-shaped plate. Using the
power flow density vector, they demonstrated that on the coupling edge of the L-shaped plate, energy does not always flow
from the source to the receiver.

A common assumption made in all these analytical methods is that the plates in the coupled structures are restricted to
being simply supported along opposite edges perpendicular to the coupling edge(s). Obviously, this condition imposes a
serious limit to the applicability of these methods to many real-world plate structures in which a plate may be coupled
with others along any edge(s) and the coupling conditions can be significantly different from the simply supported case.
Often in dealing with a coupled plate system, the modal properties for each individual plate are first calculated by
assuming the coupling edge(s) is free. The modal properties such obtained are subsequently used to determine the transfer
functions (Green functions, or receptance functions) between the responses and the reaction forces (including moments) at
the coupling edges in the actual system environment. Other limitations of the existing techniques include, for example, all
the coupling edges that are parallel and of equal length.
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In a previous study, an improved Fourier series method was proposed by Li [27] to determine the vibration of a single
beam under arbitrary boundary conditions. This method is subsequently exploited to determine the vibration behaviors of
two coupled beams [28], to investigate the effects of between-span couplings on the deflections of multi-span beam
systems under moving loads [29], and to study the vibration of a rectangular plate with elastically restrained edges using
the Rayleigh–Ritz method based on the products of beam functions [30]. Recently, the concept of using Fourier series to
expand a solution is extended to two-dimensional problems, such as, for the in-plane [31] and out-of-plane [32] vibrations
of plates with general elastic support. Unlike all the previous methods, the displacement solutions are invariantly

expressed in the form of series expansions regardless of the boundary conditions. Based on the highest order of derivatives
in the governing differential equation(s), the series is constructed in such a way that it can be directly differentiated,
through term-by-term, to derive the series representations for other variables of interest such as bending moments and
shearing forces. The unknown expansions coefficients are then obtained by letting the solution satisfy the governing
equations and boundary conditions either exactly on a point-wise basis or approximately in a variational sense as in the
Rayleigh–Ritz procedures. In the present study, this solution method is utilized to determine the vibration of two coupled
plates with elastically restrained and coupled edges, which represents the most general case attempted so far. The layout
of this paper is as follows. In Section 2, the analytical model for the two coupled plates is described for the general
boundary and coupling conditions. Numerical examples are then discussed in Section 3. Finally, concluding remarks are
made in Section 4.
2. Theoretical formulations

2.1. Descriptions for coupled plate structures

The coupled plate structure, consisting of plate 1 and plate 2, and the coordinate systems used in this investigation are
shown in Fig. 1. The first plate (of length a1, width b, and thickness h1) lies in the x1–y1 plane. The boundary conditions for
bending motion can be generally specified in terms of two kinds of restraining springs (translational and rotational) along
each edge. Similarly, the general boundary conditions for in-plane vibrations can be described by another two sets of
springs (normal and tangential) uniformly distributed along each edge in the x1–y1 plane. The units of the linear
displacement and rotational spring stiffnesses for both bending and in-plane vibration components are N/m and Nm/rad for
unit length. A list of the symbols is given in the Nomenclature.

Suppose that the second plate (of length a2, width b, and thickness h2) is connected to plate 1 at the common edge x1=0
(or x2=a2). Plate 2 is also elastically restrained at the ‘‘free’’ edges. When the x1–y1–z1 is chosen as the global coordinate
system, the coupling angle y alone is able to define the relative position between these two plates. At the structural
junction, the effects of bending, out-of-plane shearing, in-plane longitudinal (normal to the coupling edge) and in-plane
shearing (parallel with the coupling edge) will all be taken into account by including four types of coupling springs along
the common edge, designated as Kc, kc1, kc2, and kc3, respectively (see Fig. 1). The directions of the linear springs are defined
in reference to the coordinate system attached to plate 1. The elastic supports at an edge represent a general set of
boundary conditions; for instance, all the classical boundary conditions for both bending and in-plane vibrations can be
readily simulated by setting each of the restraining springs to be infinitely rigid or soft. In the same way, different coupling
conditions can be modeled by setting the coupling springs accordingly. Here, it should be pointed out that the term ‘‘soft’’
means that the coupling spring has extremely small stiffness coefficients, when they are set to zero in value, then the real
free junction will be obtained.
kbx11

Kbx11

kpx11

knx11

z1

w2

v2

u2

w1

u1

v1

y2

�

kc3

Kc
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a2

b
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x2
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Fig. 1. Two rectangular plates coupled at a certain angle with general coupling and boundary conditions.
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2.2. Series representations of the displacement functions

As previously done for a single plate [31,32], the transverse displacement will be expressed as

w1ðx1,y1Þ ¼
X1

m ¼ 0

X1
n ¼ 0

A1mn cosla1mx1 coslbny1þ
X1

m ¼ 0

a1mz1bðy1Þþb1mz2bðy1Þþc1mz3bðy1Þþd1mz4bðy1Þð Þcosla1mx1

þ
X1
n ¼ 0

e1nz1a1
ðx1Þþ f1nz2a1

ðx1Þþg1nz3a1
ðx1Þþh1nz4a1

ðx1Þ
� �

coslbny1 (1)

and the in-plane displacements as

u1ðx1,y1Þ ¼
X1

m ¼ 0

X1
n ¼ 0

B1mn cosla1mx1 coslbny1þ
X1

m ¼ 0

ain1mx1bðy1Þþbin1mx2bðy1Þð Þcosla1mx1

þ
X1
n ¼ 0

cin1nx1a1
ðx1Þþdin1nx2a1

ðx1Þ
� �

coslbny1, (2)

and

v1ðx1,y1Þ ¼
X1

m ¼ 0

X1
n ¼ 0

C1mn cosla1mx1 coslbny1þ
X1

m ¼ 0

ein1mx1bðy1Þþ fin1mx2bðy1Þð Þcosla1mx1

þ
X1
n ¼ 0

gin1nx1a1
ðx1Þþhin1nx2a1

ðx1Þ
� �

coslbny1, (3)

where la1m=mp/a1, lbn=np/b, and the supplementary functions are defined in Appendix A. The introductions of these
supplementary one-dimensional series are for the purpose of overcoming the discontinuity problems which the original
displacement functions and their relevant derivatives will potentially encounter at the edges when they are periodically extended
onto the entire x–y plane as implied mathematically by a two-dimensional Fourier series expansion. In the same way, the bending
and in-plane displacements for plate 2 can be written out directly from the above equations by replacing subscript 1 with 2.

It is well known that when a function is expanded into Fourier series, it is mathematically viewed as a periodic function
defined over the entire x–y plane. Consequently, if a plate is not ‘‘ideally’’ supported, the displacement function will
potentially exhibit a discontinuity (or finite jump) along an edge and its Fourier series will only converge, if converge at all,
to the mean values, rather than the correct boundary or coupling condition. The use of the supplementary functions is to
ensure the residual displacement function and its relevant derivatives will not have any potential discontinuities along any
edge. One can prove mathematically that the series given in Eq. (1) (or Eq. (2)) is able to expand and uniformly converge to
any function f(x1, y1)AC3 (or g(x1, y1)AC1) for 8(x1, y1)AD1: ([0, a1]�[0, b1]). In addition, the series given in Eq. (1) (or Eq. (2))
can be simply differentiated, term-by-term, to obtain the uniformly convergent series expansions for up to the fourth-
order (or second-order) derivatives in x1 or y1 direction. Thus, an exact transverse displacement solution can be obtained as
a particular function w1(x1, y1)AC3 for 8(x1, y1)AD1 which satisfies the governing differential equation exactly at every field
point and the boundary conditions exactly at every boundary point. By significantly improving the smoothness of the
(residual) displacement function, the resulting Fourier series is ensured to uniformly converge fast, at least, at a speed of
(mp)4 for any boundary/coupling conditions [33,27].

By adopting the cosine series expansions given in Eqs. ((1)–(3)), one basically views the displacement functions as an
even function of period 2a (and 2b) in x (and y) direction. The displacement functions can also be expressed in the form of
sine series expansion, implying that the displacement functions represent an odd function of period 2a (and 2b) in x (and y)
direction. For a general boundary condition, however, the cosine series tends to outperform the sine series in terms of the
convergence rate [34]. If the displacements are considered as a periodic function of period a (and b) in x (and y) direction,
they may then be expanded into a standard Fourier series with both sine and cosine terms. In such a case, however, the
number of the supplementary functions will have to be doubled to ensure the smoothness of a displacement function and
each of its derivatives along each boundary edge. Thus, the use of both sine and cosine terms offers no clear mathematical
or numerical benefits for the problem of concern.

2.3. Solution for the coupled plate system

Once a suitable form of solutions has been established, the remaining task is to find such a set of expansion coefficients
that the series will satisfy both the governing equations and the boundary/coupling conditions. In previous investigations
for the single plate case, the series solutions are made to satisfy the governing equations and the boundary conditions
exactly on a point-wise basis [31,32]. Such a solution process, however, tends to become cumbersome for general plate
structures. Thus, the Rayleigh–Ritz procedure will be instead employed here.

The Lagrangian’s function for the coupled plate system can be generally expressed as

L¼ T�V (4)

where T denotes the total kinetic energy and V denotes the total potential energy.
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For the two-plate system, the total kinetic and potential energies are given as

V ¼ V1bendingþV1in-planeþV2bendingþV2in-planeþVcoupling (5)

and

T ¼ T1bendingþT1in-planeþT2bendingþT2in-plane (6)

where Vjbending (j=1, 2) represents the total potential energy associated with the bending vibration of the jth plate,
including the strain energies and the potential energies stored in the bending-related boundary springs; Vjin-plane indicates
the total potential energy associated with the in-plane vibrations of the jth plate, including the strain energies due to the
in-plane motions and potential energies stored in the in-plane-related boundary springs; Tjbending and Tjin-plane are the
kinetic energies, respectively, corresponding to the bending and in-plane vibrations of the jth plate; and Vcoupling denotes
the potential energy associated with the coupling springs.

Take plate 1 for example. The potential and kinetic energies can be expressed as

V1bending ¼
D1

2

Z a1

0

Z b

0

@2w1

@x2
1

 !2

þ
@2w1

@y2
1

 !2

þ2m1

@2w1

@x2
1

@2w1

@y2
1

þ2ð1�m1Þ
@2w1

@x1@y1

 !2
8<
:

9=
;dx1 dy1

þ
1

2

Z b

0
kbx10w2

1þKbx10
@w1

@x1

� �2
" #

x1 ¼ 0

dy1þ
1

2

Z b

0
kbx11w2

1þKbx11
@w1

@x1

� �2
" #

x1 ¼ a1

dy1

þ
1

2

Z a1

0
kby10w2

1þKby10
@w1

@y1

� �2
" #

y1 ¼ 0

dx1þ
1

2

Z a1

0
kby11w2

1þKby11
@w1

@y1

� �2
" #

y1 ¼ b

dx1, (7)

T1bending ¼
1

2

Z a1

0

Z b

0
r1h1

@w1

@t

� �2

dx1 dy1 ¼
1

2
r1h1o2

Z a1

0

Z b

0
w2

1 dx1 dy1, (8)

V1in-plane ¼
G1

2

Z a1

0

Z b

0

@u1

@x1
þ
@v1

@y1

� �2

�2ð1�m1Þ
@u1

@x1

@v1

@y1
þ

1�m1

2

@v1

@x1
þ
@u1

@y1

� �2
( )

dx1 dy1

þ
1

2

Z b

0
knx10u2

1þkpx10v2
1

� �
x1 ¼ 0

dy1þ
1

2

Z b

0
knx11u2

1þkpx11v2
1

� �
x1 ¼ a1

dy1

þ
1

2

Z a1

0
kny10v2

1þkpy10u2
1

� �
y1 ¼ 0

dx1þ
1

2

Z a1

0
kny11v2

1þkpy11u2
1

� �
y1 ¼ b

dx1, (9)

and

T1in-plane ¼
1

2

Z a1

0

Z b

0
r1h1

@u1

@t

� �2

þ
@v1

@t

� �2
" #

dx1 dy1 ¼
1

2
r1h1o2

Z a1

0

Z b

0
u2

1þv2
1

� �
dx1 dy1, (10)

where w is the transverse displacement in the z-direction, u and v are the in-plane displacements in the x- and y-direction,
respectively; o is frequency in radians; D, G, m, r, and h are, respectively, the flexible rigidity, the extensional rigidity,
Poisson ratio, the mass density, and the thickness of the plate. The subscript 1 is used to indicate that all these variables are
related to plate 1.

The in-plane modes mean the vibration resonance in the medium plane of the plate structure, compared to the flexural
vibration which is normal to the plate plane. Although this component has little contribution to the noise radiation into
ambient environment, it plays a significant role in the vibrational energy transmission. The in-plane vibration can be
excited when there is a load component within or parallel to the plate, especially, in an L-shaped coupling plate structure,
the transverse shear force in the source plate will directly excited the in-plane vibration in its receiving plate through the
structural junction. Here, for an arbitrarily angled connection, the interactions are described by the potential energies
stored in the four types of coupling springs:

Vcoupling ¼
1

2

Z b

0
½Kcð@w1=@x19x1 ¼ 0�@w2=@x29x2 ¼ a2

Þ
2
þkc1ðw19x1 ¼ 0�w29x2 ¼ a2

cosyþu29x2 ¼ a2
sinyÞ2

þkc2ðu19x1 ¼ 0�u29x2 ¼ a2
cosy�w29x2 ¼ a2

sinyÞ2þkc3ðv19x1 ¼ 0�v29x2 ¼ a2
Þ
2
�dy, (11)

where Kc, kc1, kc2, and kc3 denote the stiffnesses of the coupling springs (refer to Fig. 1 and the Nomenclature), and y is the
coupling angle between the two plates.

It should be noted that the contributions of the elastic restraints along boundary edges are included in Eqs. (7) and (9),
and those of the coupling springs in Eq. (11). The stiffness for each of these elastic springs can be arbitrarily set as any value
from zero to infinity. For simplicity, in this study the elastic support or coupling is assumed to be uniform along each edge.
However, the current method can be readily applied to the most general boundary and coupling conditions in which the
stiffness for each spring may vary with the spatial coordinates continuously, discontinuously or discretely. In such a case,
the stiffnesses in Eqs. (7), (9), and (11) should be understood as functions of the spatial coordinates.
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Substituting Eqs. ((5)–(11)) into (4) and minimizing the Lagrangian with respect to the all unknown Fourier coefficients,
one is able to yield 38 sets of linear equations which can be written in a matrix form as

ðK�o2MÞE¼ 0, (12)

where K and M are, respectively, the stiffness and mass matrices for the coupled plate system, and E is a vector that
contains all the unknown Fourier expansion coefficients in Eqs. ((1)–(3)). For conciseness, the definitions of these matrices
and vector are given later in Appendix B.

The calculations of the surface and line integrals defined in Eqs. ((7)–(11)) usually represent the most time-consuming
part of the work in finding the solution. In this study, all the integrations will be carried out analytically in a closed form.
Thus, the computing time can be substantially reduced in comparison with a traditional numerical integration scheme. It is
clear from Eq. (12) that the natural frequencies and the eigenvectors for the coupled plate system can now be easily
obtained by solving a standard matrix eigenproblem. Each of the eigenvectors contains all the Fourier coefficients for the
corresponding mode; its actual mode shape can be simply derived by substituting the Fourier coefficients into Eqs. ((1)–
(3)). If the vibrational responses of the system to an applied load is desired, one just needs to include the work done by this
load in the Lagrangian’s function, which will eventually lead to a force term appearing on the right-hand side of Eq. (12).
Once the vibrations are known on each plate, other variables of interest such as the power flows through the junction or/
and its spatial distribution in the plates can be calculated easily, especially in view of the current analytical form of
solutions.

The Rayleigh–Ritz solution is usually referred to as a weak or approximate solution, reflecting the fact that its
smoothness requirement is typically relaxed. For instance, only the first derivatives of the flexural displacement function
are required to be continuous throughout the solution domain in the Rayleigh–Ritz procedure in contrast to the third
derivatives in the strong formulation. As mentioned earlier, however, the current displacement functions are adequately
smooth so that the unknown expansion coefficients can be actually determined from the governing differential equations
and the boundary/coupling conditions. It is well known mathematically that when the Rayleigh–Ritz solution is
sufficiently smooth over the entire solution domain, it is actually equivalent to the exact solution derived from the strong
formulation. By imposing a higher than necessary continuity requirement on the displacement functions, the series
SS& C 

SS& C 

SS& C 

SS& C 

SS& C 

SS& C 

plate 2

plate 1

plate 2

plate 1

SS: simply supported for bending component
C: clamped for in-plane component

plate 2

plate 1� = 90°

� = 45°

� = 0°

Fig. 2. Three coupling configurations with different angles at the structural junction.
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expansions will be able to converge faster. More importantly, other variables of interest such as the bending moments,
and in-plane and shear forces can be directly obtained from the displacement series through appropriate mathematical
operations. In case if one does not care for such benefits, a traditional Rayleigh–Ritz solution can be calculated by
Table 1
Natural frequencies for an L-shaped plate structure with the coupling springs: Kc=104, kc1=104, kc2=105, and kc3=104.

Mode no. Natural frequencies (Hz)

M=N=4 M=N=5 M=N=6 M=N=7 M=N=8 M=N=9 FEA

1 16.243 16.205 16.179 16.165 16.154 16.147 16.109

2 20.573 20.539 20.480 20.468 20.444 20.438 20.389

3 34.065 34.037 33.813 33.805 33.713 33.710 33.553

4 52.600 52.576 52.271 52.264 52.139 52.136 51.934

5 57.465 57.326 57.323 57.275 57.274 57.251 57.209

6 60.491 60.246 60.240 60.160 60.158 60.122 60.061

7 70.519 70.117 69.917 69.793 69.715 69.659 69.445

8 77.413 76.868 76.683 76.522 76.442 76.373 76.125

9 97.868 96.734 96.535 96.196 96.112 95.965 95.583

10 116.66 114.87 114.79 114.23 114.21 113.96 113.49

Fig. 3. The mode shapes for an elastically coupled L-shaped plate structure with the following coupling springs (Kc=104, kc1=104, kc2=105, and kc3=104):

(a) the first mode; (b) second; (c) third; (d) fourth; (e) fifth; (f) sixth.
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simply dropping off the four terms with subscript 3 or 4 from Eq. (1), and all the supplementary terms from Eqs. (2)
and (3).

For complex plate structures, the Rayleigh–Ritz procedure will have some advantages over those based on solving the
governing equations and the boundary/coupling conditions directly. For example, they include: (a) all the unknown
expansion coefficients can be obtained from the one-step solution process of minimizing the Lagrangian’s function and (b)
Table 2
Natural frequencies for two rectangular plates rigidly coupled in an L-shaped configuration.

Mode no. FEA (Hz) Present (Hz) Difference (%)

1 25.333 25.449 0.458

2 37.887 37.964 0.203

3 59.300 59.133 0.282

4 66.233 66.199 0.051

5 77.769 77.862 0.120

6 98.372 97.770 0.612

7 99.252 98.189 1.071

8 117.25 112.44 4.102

9 135.01 134.74 0.200

10 139.28 139.20 0.057

Fig. 4. The mode shapes for the rigidly coupled L-shaped plate structure: (a) the first mode; (b) second; (c) third; (d) fourth; (e) fifth; (f) sixth.
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the effects of the couplings are limited to the neighboring plates (manifested in the banded coefficient matrices for the final
system). The most important advantage, however, is perhaps related to the viability of developing an FEM-like assembly
procedure for generating the final system by viewing each plate as an element. Although the current study is only focused
on two coupled plates, it is quite straightforward to extend the proposed method to a complex structure composed of any
number of plates.
3. Results and discussions

Several examples with different coupling configurations (see Fig. 2) will be considered in this section. Both plates are
assumed to have the same thickness; that is, h1=h2=0.008 m. The lengths for plate 1 and 2 are a1=1.4 m and a2=1.0 m,
respectively, and the width for the plates is b=1.2 m. The material properties for both plates are given as Young’s modulus
E=2.16�1011 N/m2, mass density r=7800 kg/m3, and Poisson ratio m=0.28.

As the first example, consider two plates connected together at a right angle to form an L-shaped plate structure as
shown in Fig. 2(a). The simply supported and clamped boundary conditions are, respectively, specified for the flexural and
in-plane displacements on plate 1 along the edges y1=0, x1=a1, and y1=b. The same boundary conditions are also applied to
plate 2 along the corresponding edges. All the classical homogeneous boundary conditions (i.e., simply supported, clamped,
and free) can be viewed as the special cases of the general elastic supports when each boundary spring becomes infinitely
rigid or soft (the infinite stiffness is actually represented by a very large number, 5.0E+11, in the numerical calculations).
The stiffness values of the coupling springs are arbitrarily chosen as Kc=104, kc1=104, kc2=105, and kc3=104. Numerically,
these values are close to the nominal bending rigidity of the plate, Eh3/12(1�n2)=104, a condition under which the elastic
supports or joints tend to have significant impact to the dynamic characteristic of the plate(s). The first 10 natural
frequencies of the coupled system are presented in Table 1 for different truncation schemes, M=N=4, 5, 6, 7, 8, 9. The FEA
results obtained from an ANSYS model are also given there for comparison. In the FEA model, the element sizes are
uniformly specified as 0.02 m�0.02 m which is considered fine enough to accurately capture the spatial variations of these
modes. It is seen that the current prediction compares well with the FEA results, and is sufficiently accurate even when
only a small number of terms is included in the series expansions. In the subsequent calculations, for simplicity, all the
series expansions will be truncated to M=N=9. Additionally, it is worthy to note that the current method is non-
dimensional as shown in Eqs.((1)–(3)), then there will be no much difference in analyzing big or small size plates. However,
the case is different for FEA. Since FEA is a grid-based method, the total mesh number will be considerably increased while
the plate structure of large size is treated.

The corresponding mode shapes can be readily calculated by substituting the Fourier coefficients into the displacement
expressions, Eqs. ((1)–(3)). Plotted in Fig. 3 are the first six modes for the L-shaped plate structure. It can be seen that due
to the elastic coupling the displacements are no longer continuous across the junction. Now, consider these two plates are
rigidly connected together. The condition of rigid connection can be easily simulated by setting the stiffness for each
coupling spring to be infinitely large. The corresponding natural frequencies are given in Table 2 together with the FEA
results. The first six modes are plotted in Fig. 4. In comparison with their counterparts in Fig. 3 for the elastic coupling case,
not only have the displacement gaps disappeared at the junction, but also the activities tend to cover the entire structure.
For the two plates connected at 901, although out-of-plane displacements in two plates are not directly coupled through
transverse shear force, they are still interacted through moment. As to the coupling between bending vibration in one plate
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Fig. 5. Variation of the fundamental mode frequency of L-shaped plate with the non-dimensional rotational coupling spring stiffness Kc ¼ Kca=D.
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and the in-plane vibration in the other, the vertical coupling springs play a dominant role. For a very large case,
corresponding to a rigid coupling such as the realistic welding joints, the interaction between bending and in-plane
vibration is strong. And the displacements for both two vibration components are the same. For a soft case, namely, the
stiffness coefficient is far smaller than the plate structural rigidity or zero, then the coupling between the bending and in-
plane vibration is weak, and will cause the gap along the structural junction for a medium spring coefficient, which can be
seen in Fig. 3.

Before proceeding another new coupling configuration, let us change the structural joint strength to study its effect on
the modal characteristics of the L-shaped plate. Since there are various possible varying conditions of coupling springs, for
simplicity, just the rotational spring Kc is considered to be changed, while the other three linear interface stiffnesses are all
set as infinitely large numbers. The non-dimensional stiffness K c ¼ Kca=D is defined and used here, in which a=(a1+a2)/2
and D=Eh3/12(1�n2) is the flexural rigidity of plate structure. Fig. 5 illustrates the variation of fundamental modal
frequencies with different rotational coupling conditions. It can be seen that when the non-dimensional rotational stiffness
Fig. 6. Evolution of the fundamental mode shapes of the L-shaped plate with the variation of rotational interaction strength: (a) K̄c=1, (b) K̄c=5, (c) K̄c=10,

(d) K̄c=100.

Table 3

The first six modal frequencies of the L-shaped plate with various non-dimensional rotational coupling spring stiffness K c ¼ Kca=D.

Non-dimensional stiffness

factor Kc

Modal order

1 2 3 4 5 6

10�3 24.104 33.852 54.473 65.409 75.323 93.360

10�2 24.108 33.860 54.481 65.410 75.327 93.372

10�1 24.151 33.945 54.556 65.425 75.364 93.493

100 24.466 34.648 55.197 65.547 75.686 94.478

101 25.170 36.804 57.544 65.949 76.927 96.962

102 25.417 37.823 58.925 66.167 77.734 97.690

103 25.448 37.962 59.129 66.199 77.860 97.769

104 25.451 37.976 59.151 66.202 77.873 97.777



J. Du et al. / Journal of Sound and Vibration 330 (2011) 788–804798
coefficient is smaller than 10�2, its variation almost has no effect on modal parameters of the coupled plates. As the
stiffness parameter further increases, a sensitive effect zone can be observed, in which the modal frequency increases with
different rate depending on the coupling stiffness. When the coupling factor is beyond 103, the modal parameter
approaches the upper limit basically corresponding to the rigid interaction case. Table 3 presents the frequency parameters
of the first six modes under different coupling stiffness coefficients. Similar influence trend of the coupling conditions can
be found for the other structural modes. In fact, this coupling stiffness effect behavior can be also understood by observing
Fig. 7. The mode shapes for two plates elastically coupled at the angle of 45-degree with the following coupling springs (Kc=106, Kc1=106, Kc2=105,

Kc3=104): (a) the first mode; (b) second; (c) third; (d) fourth; (e) fifth; (f) sixth.

Table 4
Natural frequencies for two plates coupled at 451 with the coupling springs: Kc=106, kc1=106, kc2=105, and kc3=104.

Mode no. ANSYS (Hz) Present (Hz) Difference (%)

1 5.9055 6.0115 1.795

2 7.2378 7.3628 1.727

3 15.174 15.030 0.949

4 24.776 25.387 2.466

5 30.762 30.801 0.127

6 33.386 33.600 0.641

7 43.272 42.889 0.885

8 45.940 45.744 0.427

9 54.783 55.751 1.767

10 67.973 69.752 2.617
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the evolution of spatial distribution pattern of the coupled structural mode, as given in Fig. 6 for the fundamental mode
cases. It is clearly shown that how the transfer from separate modes into a joined mode occurs within the coupling stiffness
sensitive zone.

Now, change the coupling angle to 451 which corresponds to the second configuration shown in Fig. 2(b). In addition,
the boundary conditions are modified; that is, both the flexural and in-plane displacements on each plate are now clamped
at y=b, and all other edges are completely free. In Table 4, the first ten natural frequencies are presented for the elastic
coupling condition: Kc=106, kc1=106, kc2=105, and kc3=104. The first six modes are shown in Fig. 7. They clearly exhibit a
global characteristic as compared with those modes given in Fig. 3 for the L-shaped case. When the coupling angle is
different from 901, the flexural vibrations on both plates will be directly coupled together through the transverse spring kc1.

Lastly, a flat configuration as illustrated in Fig. 2(c) will be considered for both elastic and rigid coupling conditions. In
this example, the boundary conditions will be changed back to the ones as previously specified for the L-shaped structure.
When the coupling angle is equal to zero, the bending and in-plane vibrations will essentially become decoupled, and can
be determined separately. For the elastic connection, the coupling springs are taken as Kc=105, kc1=105, kc2=103, and
kc3=103. In Table 5 the calculated natural frequencies are compared with those calculated from an ANSYS model. The first
six mode shapes are plotted in Fig. 8. It is seen that the weak coupling actually allows the plates to move almost
independently.
Fig. 8. The mode shapes for two plates elastically coupled in a flat configuration with the following coupling springs (Kc=105, kc1=105, kc2=103, and

kc3=103): (a) the first mode; (b) second; (c) third; (d) fourth; (e) fifth; (f) sixth.

Table 5
Natural frequencies for the zero-angle coupled plate structure with the coupling springs: Kc=105, kc1=105, kc2=103, and kc3=103.

Mode no. ANSYS (Hz) Present (Hz) Difference (%)

1 16.965 16.996 0.183

2 21.228 21.275 0.221

3 36.011 36.131 0.333

4 54.290 54.470 0.332

5 57.922 57.956 0.059

6 60.438 60.498 0.099

7 72.836 73.021 0.254

8 77.250 77.475 0.004

9 97.034 97.395 0.372

10 115.52 115.95 0.372



Fig. 9. The mode shapes for a rigidly coupled plate structure in a zero-degree configuration: (a) the first mode; (b) second; (c) third; (d) fourth; (e) fifth;

(f) sixth.

Table 6
A comparison of the first 10 natural frequencies for the two plates rigidly coupled in a flat configuration.

Mode no. Analytical (Hz) Present (Hz) Difference (%)

1 17.261 17.299 0.220

2 27.618 27.745 0.460

3 44.880 45.016 0.303

4 58.689 58.725 0.061

5 69.045 69.163 0.171

6 69.045 69.207 0.235

7 86.307 86.545 0.236

8 100.12 100.17 0.050

9 110.47 110.77 0.272

10 127.73 127.78 0.040
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The rigid connection condition is obtained simply by increasing stiffness values of the coupling springs to infinity. In
this case, the two plate structure simply degenerates to a single plate, which has a combined length of a1+a2. Thus, the
calculated natural frequencies and mode shapes can be directly compared with the analytical results for a single simply
supported plate. A comparison of the natural frequencies is made in Table 6. The mode shapes for the first six modes are
shown in Fig. 9. The minor differences for the calculated natural frequencies are believed due to the combination of the
numerical truncation of the series expansions and the actual finiteness (instead of infinity) of the stiffness values for the
boundary and coupling springs. This example, although it may appear to be trivial, has some very important implications;
for instance, it says that a continuous plate component can be arbitrarily divided into a number of pieces to avoid non-
uniformities/irregularities related to geometry or materials.

4. Conclusions

A general method is presented for the free vibration analysis of two rectangular plates elastically coupled together at an
arbitrary angle. Instead of being simply supported along the edges perpendicular to the coupling edge as commonly
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assumed in the literature, each plate can be generally restrained at any edge by a set of elastic springs of arbitrary stiffness.
A universal set of series expressions is used to represent the transverse and in-plane displacements on each plate
regardless of the boundary and coupling conditions. The unknown expansions coefficients are determined using the
Rayleigh–Ritz method. Since the displacements functions represented by the series expansions are adequately smooth
throughout the entire solution domain, the Rayleigh–Ritz solution is exact and mathematically equivalent to what is
obtained from a strong formulation by directly solving the governing equations and the boundary and coupling conditions.

The accuracy and reliability of the proposed solution method have been illustrated through numerical examples which
include various boundary conditions and coupling configurations. Compared to other solving technique such as FEA and
other analytical solution, the following advantages may be drawn out: (1) no mesh is used, then there is no need for mesh
refinement like the FEA does as the analysis frequency increases; (2) a fast convergence rate is observed, which implies
that the efficient calculation can be achieved; (3) the current method does not involve much any modification to the
solution algorithm or procedure when the boundary or coupling condition is changed. Even this study is focused on the
free vibration of two coupled plates, the proposed method can be readily extended to structures consisting of any number
of plates. The current model can also be used to investigate the effect of a boundary or coupling condition on the dynamic
behavior of a built-up structure and on the power flows through any junctions and structural components.
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Appendix A. Supplementary functions used in Eqs. ((1)–(3))

The supplementary functions used in the transverse displacement expression on plate 1 are defined as

z1a1
ðx1Þ ¼

9a1

4p
sin

px1

2a1

� �
�

a1

12p
sin

3px1
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, (A-1)

z2a1
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and

z4bðy1Þ ¼�
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It is easy to verify that

zu1a1
ð0Þ ¼ zu2a1

ða1Þ ¼ 1, (A-9)

z0003a1
ð0Þ ¼ z0004a1

ða1Þ ¼ 1 (A-10)

and all the other first and third derivatives are identically equal to zero at the edges.
Similar conditions holds for the y-related supplementary functions, z1b(y1), z2b(y1), z3b(y1), and z4b(y1).
The supplementary functions used in the in-plane displacement expansions on plate 1 are as follows:
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a1
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It is also easy to verify that

xu1a1
ð0Þ ¼ 1, x1að0Þ ¼ x1aðaÞ ¼ xu1aðaÞ ¼ 0 (A-15a, b)

and

xu2aðaÞ ¼ 1, and x2að0Þ ¼ x2aðaÞ ¼ xu2að0Þ ¼ 0: (A-16a, b)

Similar conditions holds for the y-related supplementary functions, z1b(y1) and z2b(y1).
Appendix B. Additional definitions

In Eq. (12), the unknown coefficient vector and the stiffness and mass matrices are defined as

E¼ WT
1 UT

1 VT
1 WT

2 UT
2 VT

2

h iT
, (B-1)

W1 ¼ A100,A101,. . .,A1m00,A1m01,. . .A1m0n0 ,. . .,A1MN ,a10,. . .,a1M ,b10,. . .,b1M ,



c10,. . .,c1M ,d10,. . .,d1M ,e10,. . .,e1N ,f10,. . .,f1N ,g10,. . .,g1N ,h10,. . .,h1N

�T
, (B-2)

U1 ¼ B100,B101,. . .,B1m00,B1m01,. . .B1m0n0 ,. . .,B1MN ,ain10,. . .,ain1M ,bin10,. . .,bin1M ,cin10,. . .,cin1N ,din10,. . .,din1Ng
T,

n
(B-3)

V1 ¼ C100,C101,. . .,C1m00,C1m01,. . .C1m0n0 ,. . .,C1MN ,ein10,. . .,ein1M ,fin10,. . .,fin1M ,gin10,. . .,gin1N ,hin10,. . .,hin1Ng
T,

n
(B-4)

W2 ¼ A200,A201,. . .,A2m00,A2m01,. . .A2m0n0 ,. . .,A2MN ,a20,. . .,a2M ,b20,. . .,b2M ,
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�T
, (B-5)
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T,

n
(B-7)

K¼
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and

M¼

M1�1 M1�2 M1�3 M1�4 � � � M1�38
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3
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In the above equations, it has been assumed that all the series expansions are truncated to m=M and n=N for the sake of
numerical calculations.

In order to demonstrate the structures of the coefficient matrices K and M in Eqs. (B–8) and (B–9), two new indices,
s=m(N+1)+n+1 and t=m0(N+1)+n0+1, will be introduced to simplify the following notations. All the sub-matrices in the
first row, which correspond to the derivatives of the Lagrangian with respect to Amn, can be explicitly defined as follows:
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The sub-matrices, {K1�3}s,m0 +1, {K1�4}s,m0 +1, and {K1�5}s,m0 +1, can be directly obtained from Eq. (B-11) by replacing
subscript 1 of the z-functions with 2, 3, and 4, respectively:
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Similarly, {K1�7}s,n0 + 1, {K1�8}s,n0 +1, and {K1�9}s,n0 + 1 can be obtained from Eq. (B-12) by replacing subscript 1 of the z-
functions with 2, 3, and 4, respectively:

fK1�10gs,t ¼ 0, fK1�11gs,m0 þ1 ¼ 0, fK1�12gs,m0 þ1 ¼ 0, fK1�13gs,n0 þ1 ¼ 0, fK1�14gs,n0 þ1 ¼ 0, (B-13217)

fK1�15gs,t ¼ 0, fK1�16gs,m0 þ1 ¼ 0, fK1�17gs,m0 þ1 ¼ 0, fK1�18gs,n0 þ1 ¼ 0, fK1�19gs,n0 þ1 ¼ 0, (B-18222)

fK1�20gs,t ¼ ð�1Þm
0 þ1kc1 cosy

Z b
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and

fK1�21gs,m0 þ1 ¼ ð�1Þm
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0
z1bðy2Þcoslbny1 dy: (B-24)

The sub-matrices {K1�22}s,m0 +1, {K1�23}s,m0 + 1, and {K1�24}s,m0 + 1 can be calculated from Eq. (B-24) by replacing subscript
1 of the z-functions with 2, 3, and 4, respectively:

fK1�25gs,n0 þ1 ¼�kc1 cosyz1a2
ða2Þ

Z b

0
coslbn0y2 coslbny1 dy: (B-25)

The expressions for {K1�26}s,n0 + 1, {K1�27}s,n0 + 1 and {K1�28}s,n0 +1 can be obtained from Eq. (B-25) by replacing the
subscript 1 of the z-functions with 2, 3 and 4, respectively:
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fK1�34gs,t ¼ 0, fK1�35gs,m0 þ1 ¼ 0, fK1�36gs,m0 þ1 ¼ 0, (B-31233)

fK1�37gs,n0 þ1 ¼ 0, and fK1�38gs,n0 þ1 ¼ 0: (B-34, 35)

fM1�1gs,t ¼ r1h1

Z a1

0

Z b

0
cosla1m0x1cosla1mx1coslbn0y1coslbny1 dx1 dy1, (B-36)
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and

fM1�2gs,m0 þ1 ¼ r1h1

Z a1

0

Z b

0
cosla1m0x1 cosla1mx1z1bðy1Þcoslbny1 dx1 dy1: (B-37)

The expressions for{M1�3}s,m0 +1, {M1�4}s,m0 + 1, and {M1�5}s,m0 +1 can be obtained from Eq. (B-37) by replacing subscript 1
of the z-functions with 2, 3, and 4, respectively.

fM1�6gs,n0 þ1 ¼ r1h1

Z a1

0

Z b

0
z1a1
ðx1Þcosla1mx1 coslbn0y1 coslbny1 dx1 dy1: (B-38)

The expressions for {M1�7}s,n0 +1, {M1�8}s,n0 + 1, and {M1�9}s,n0 +1 can be obtained from Eq. (B-38) by replacing subscript 1
of the z-functions with 2, 3, and 4, respectively. The remaining sub-matrices, from {M1–10} to {M1–38}, are all zero matrices.
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